PETERS TOWNSHIP HIGH SCHOOL COURSE SYLLABUS: AP COMPUTER SCIENCE PRINCIPLES

Course Overview and Essential Skills

AP Computer Science Principles is a full-year, rigorous, entry-level course that introduces high school students to the foundations of modern computing. The course covers a broad range of foundational topics such as programming, big data, digital privacy and security, and the societal impacts of computing.

Course Textbook and Required Materials

- Computer Concepts 2016: Enhanced Edition 2017 & ISBN# 978-1-305-65628-4
- Code.org curriculum
 - o Instructional guides
 - o Formative and summative assessments
 - o Rubrics
 - Videos
 - Computational tools
 - o Students access to this site
 - o H Drive
 - The code.org curriculum is an approved curriculum by the College Board that provides handson activities, program simulations, and assessments that students will use throughout this course
- Blown to Bits http://www.bitsbook.com
 - o An on-line textbook that will be used for current articles and supplemental material throughout the curriculum

Course Outline of Material Covered:

Unit or Topic	Concepts/Skills/Resources	Timeframe
Unit 1: The Internet	 Sending Binary Messages Encoding and Sending Numbers Encoding and Sending Text IP Addresses, Packets, and Redundancy Routing, Protocols and Abstraction 	5 weeks
Unit 2: Digital Information	 Text Compression Encoding Images Interpreting Visual Data Communicating with Visualization Cleaning Data and Making Summary Tables 	6 weeks
Unit 3: Algorithms & Programming	 Designing Algorithms Procedural Abstraction & Top Down Design Writing Functions Loops and Documentation 	4 weeks
Unit 4: Building Apps	 Designing Event-Driven Apps User Input and Variables Boolean logic and conditionals 	7 weeks

	 While loops Simulations Arrays Functions with return values Processing arrays 	
Unit 5: Performance Tasks	 Preparation: Create Performance Task Preparation: Explore Performance Task 	4 weeks

^{*}Depending on the needs of the class or changes in the school year, the course outline is subject to change.